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Abstract 
 
High rate serial-data technologies require that receivers be tested under the stress of 
calibrated levels of Gaussian Random Jitter (RJ) and/or voltage noise. Every standard 
assumes that noise follows a Gaussian distribution with a white frequency spectrum. 
Several emerging standards require that stress signals used to test receivers be filtered, 
PCI Express Gen 2 requires two separately filtered Gaussian noise signals. In this paper 
we determine the effect of frequency band-limiting on the distribution of ideal and 
commercially available, noise sources. We analyze and compare simulated and real noise 
sources under different conditions. 
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Introduction 
 
Receiver Tolerance Testing 
 
The successful operation of a high speed link at multi GBit/s rates requires either a very 
well designed and clean channel, or a receiver architecture that is able to tolerate signal 
impairments such as crosstalk, jitter, and amplitude noise. Every successful 
communications and computer standard that has emerged in the last 5-10 years followed 
the latter approach: PCI Express, Serial ATA and 10 GbE are just a few examples of 
standards that require receivers to include devices such as clock data recovery circuits 
and equalizers. This allows them to work with signals that may in some cases be so 
distorted that they are not even recognizable as a digital signal. 
 
The ability of a receiver to work with a degraded input signal is tested with a well defined 
worst case signal; during the ‘receiver tolerance test’, the device must operate at a low Bit 
Error Ratio (often less than 10-12) in order to be compliant to the standard. Traditionally, 
going back to SONET, the test signal included just a sinusoidal and a random jitter term: 
the frequency and amplitude of the sinusoidal were varied to test the clock data recovery 
circuit, while the random part was kept constant and emulated the random jitter of a real 
system. However, as receivers have become more elaborate, so have the signals to test 
them: receiver tolerance specifications now usually call for amplitude noise (both 
sinusoidal and random) in addition to jitter, along with worst case band limited channels 
to apply Inter-Symbol Interference. 
 
Additionally, the specifications for random jitter have become more complicated than just 
specifying its amplitude. The CEI-6G standard, for example, requires random jitter 
subject to a 10 MHz high pass filter which prevents it from being tracked by the clock 
data recovery circuit. Recently, PCI Express 2.0 went one step farther, asking for two 
different RJ sources of different amplitudes, one with a bandwidth from 10 kHz to 1.5 
MHz and the other 1.5-100 MHz. 
 
Gaussian White Noise 
 
A Gaussian distribution is determined by two parameters, the mean µ and standard 
deviation σ. Its probability density function or, more or less equivalently, its time-domain 
distribution, is given by 

 
 
The Gaussian distribution appears in virtually every area of science and engineering. It is 
simple and well behaved, and the central limit theorem – that the combination of a large 
number of small amplitude, independent random variables follows a Gaussian 
distribution – provides compelling reason to believe that it is the foundation of many 
distributions. 



 
An important property of a Gaussian distribution is that it is unbounded: the probability 
that a random variable is larger than x is always greater than zero, regardless of how large 
x is. And because of symmetry, the same is true for the negative side. As a consequence, 
the peak-to-peak value of a Gaussian random process is infinity. However, once we 
observe a random process it becomes finite, and therefore has an effective peak-to-peak 
that is finite too; its magnitude is a function of probability. For example, random 
variables that follow a Gaussian distribution of µ = 0.0 and σ = 1.0 occur with values 
larger than 7 and smaller than -7 with a probability of less than 10-12. 
 
A more useful measure than the peak-to-peak is the crest factor, which describes the 
effective peak-to-peak span of a signal in terms of the standard deviation of the 
distribution. The crest factor is usually defined as the ratio of the observed peak value to 
the rms value of the distribution: 

crest factor = 
rms
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For distributions that can exhibit asymmetries, like jitter and noise, it is more appropriate 
to use the ratio of the observed peak-to-peak to the rms value: 

noise crest factor = 
rmsV

VV minmax   

 
The second important property of White Gaussian Noise is its frequency spectrum: the 
power spectral density is flat over the bandwidth of interest, and there are no dominating 
frequencies. For finite length signals however, this is true only for the average. 
 
Scope of this Paper 
 
Receiver tolerance specifications make two assumptions when they specify random jitter 
or level noise components: one, that electronic noise is in fact Gaussian White Noise, and 
second that band limiting does not significantly change its time domain distribution. We 
were interested primarily in verifying the second assumption: if it were false, then the 
standard approach to random jitter tolerance testing with a white noise source and a set of 
filters were false. 



Numerical Experiments 
 
Most of the results presented in this paper are based on numerical experiments performed 
with random numbers generated by software (specifically the randn function in Matlab, 
which uses the Ziggurat algorithm [6]). This approach removes a great number of 
uncertainties – we didn’t have to deal with imperfections that are present in real noise 
sources, filters, and measurement equipment – and provides random variables whose 
properties are well documented and are true to the theory to within the numerical 
accuracy of floating point numbers. 
 
The approach also allowed us to analyze random data in a way that would not have been 
possible otherwise: for example, we are able to directly compare original and filtered 
data, look at the difference between small scale and large scale properties of samples, use 
a wide range of filters, and so on. Additionally, we were able to repeat experiments many 
times with minimal overhead and under the exact same boundary conditions 
 
Effects of Sample Depth on Distribution 
 
Our first numerical experiment shows the effect of the length of a sample on the observed 
distribution. A sample with a finite length must have a finite peak-to-peak value, and 
there is a systematic relationship between the sample length and observed peak-to-peak 
value and its crest factor. 
 
In Figure 1, we show histograms for three different random samples consisting of 4096 
(4K), 32K and 1M values respectively. Note how the linear plots (left side of the figure) 
are extremely close to the analytical probability density function with its characteristic 
bell shape. In logarithmic scale however, things look different: the histogram data closely 
follows the theory up to a certain point, where the probability becomes zero. Where 
exactly that happens depends on the length of the sample: the more values we look at, the 
larger is the observed peak-to-peak and therefore the crest factor. 
 
The results for a similar experiment are shown in Figure 2. This time, we created only a 
single sample, consisting of 106 random numbers. We then calculated the minimum and 
maximum, standard deviation, peak-to-peak, and crest factor for subsections of 
increasing size: starting with the first 10 values (#1-#10), then 20 values (#1-#20), 30 
values, and so on, up to the length of the original sample. Plotted against the number of 
samples, the data shows that the standard deviation stabilizes after a surprisingly small 
number of samples (about 100) while the minimum and maximum and therefore also the 
peak-to-peak continues to grow. Once the standard deviation stabilizes, the crest factor is 
directly proportional to the peak-to-peak; in fact, the crest factor is equal to the peak-to-
peak since we’ve used a standard normal distribution with a standard deviation of 1.0. 
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Figure 1 Histograms for random samples with different lengths versus probability density functions 
for an equivalent Gaussian distribution (dashed), in linear (left) and logarithmic (right) scale 
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Figure 2 Minimum, Maximum, Standard Deviation, Peak-to-peak and Crest Factor for subsections 
of a larger sample 



Correlation between local frequency content and extremes 
 
Gaussian white noise has a flat frequency spectrum. However that is true only for very 
large sample sizes, while the frequency content of smaller samples (or sections of a larger 
sample) is randomly distributed around the average power; if it were not true, the signal 
would not be random. Our next experiment was designed to show correlation between 
local high frequency content and the extreme values in a long sample of random noise. 
 
The base data for this test was a vector of 1024x1024 (about 1x106) normally distributed 
random numbers. We chose a mean of 0.0 and a standard deviation of 1.0, the values for 
a standard normal distribution. The vector was then split into 1024 batches of 1024 
samples each and each batch was analyzed independently. 
 
We determined the frequency content of each batch with a Fast Fourier Transform (FFT). 
We assumed a sample rate of 2x109 samples per second, so the highest frequency that can 
be resolved is 1 GHz, a common spec for real noise sources. The local frequency content 
of the signal is shown in Figure 3, using a spectrogram graph: the color shows the power 
spectral density as a function of time on the horizontal and frequency on the vertical axis. 

 
Figure 3 Sonogram style frequency spectrum of a random noise signal 

 
The spectrogram does not show any obvious patterns in the data: the dominant color is a 
light green, equivalent to average power, and while there are excursions to both extremes 
they are randomly distributed. In grey scale, the plot looks like static noise on an old 
black and white TV which is exactly what we expect of random data. 
 
Based on the power spectral density, we calculated a measure for the high frequency 
content of each batch: we arbitrarily defined a high frequency cutoff of 90% of the signal 
bandwidth, and then used the ratio of energy above 900 MHz to the total spectral energy 
to describe the high frequency content of each batch. A perfect noise signal has a flat 



frequency spectrum, and the expected average value for this measure is therefore 10%. 
Our results show a surprisingly large variability, with batches as low as 9.25% and as 
high as 11.75%, supporting our assumption that local high frequency content is not 
constant. 
 
For every batch, we also calculated the average, minimum and maximum value, the 
standard deviation (rms) and peak-to-peak, the crest factor, and additionally the absolute 
largest value. Any correlation between the local high frequency content and local extreme 
values would appear in a scatter plot of these local descriptive values against the high 
frequency measure. However, none of the plots in Figure 4 show even a hint of 
correlation, so much that we didn’t even bother to calculate correlation coefficients. 1  
 
The local properties of a long signal are apparently independent of the local high 
frequency content, which is somewhat counterintuitive. On the other hand, it is 
straightforward to imagine two signals with radically different frequency content, yet 
identical standard deviation and crest factor, for example, a square wave with variable 
frequency. In any case, this experiment didn’t provide any evidence that a low pass filter 
would affect the extremes in a random signal more than the average values. 

                                                 
1 In order to rule out an influence of inappropriate values for our experiment, we performed a crude manual 
sensitivity analysis: we varied several key parameters (batch size, number of batches, high frequency 
threshold) across a range of values, and didn’t see significant influence on the correlation results. The 
number of batches and values per batch that we finally chose is a sweet spot in terms of frequency 
resolution (0.975 MHz) and ability to display (1024 batches can still be shown on a standard resolution 
monitor). We chose a sample length that is a power of two because that significantly speeds up the Matlab 
FFT. 
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Figure 4 Correlation Analysis between high frequency content and local extreme values 



Effect of low pass filter on extreme values 
 
In our third experiment, we determined whether or not a low pass filter preferentially 
affects larger values in a random signal. If true, then the crest factor of low pass filtered 
data would be smaller than that of unfiltered data. 
 
This experiment was based on a vector of 1024x1024 (about 1x106) normally distributed 
random numbers with mean of 0.0 and standard deviation of 1.0, assuming a sample rate 
of 2 billion samples per second. The data was then filtered with a simple first order low 
pass filter. Figure 5 shows the time record of two runs using different 3 dB bandwidth 
settings for low pass filters of 900 MHz and 100 MHz, along with the ratio of filtered 
values to unfiltered values; this is essentially a time record of the value reduction due to 
the filtering. 
 
With no filter in place, the ratio would be one. With an extremely aggressive low pass 
filter of very low bandwidth, the filtered signal would be nearly zero and the ratio would 
be correspondingly small. We therefore expect a ratio between 0 and 1, depending on the 
bandwidth setting. However, Figure 5 clearly shows that this is not the case. Note that the 
vertical axis for the ratio is in units of 104 and shows outliers as large as 5104. There are 
also negative values, indicating that filtering actually changed the sign. 
 
The reason for the extremely large ratios that we observed is that our original data 
contains values that are close to zero, and dividing any value by something very small 
tends towards infinity. We’ve therefore excluded value pairs where the absolute of the 
unfiltered value is below 0.1 from our further analysis 2. 
 
Figure 6, in the top row, shows scatter plots of filtered vs. unfiltered data3. Both test 
cases show correlation, the 900 MHz more so than the 100 MHz filter. The slope of both 
point clouds represents the ratio of total energy in the unfiltered signal to filtered signal: 
on average, the filtered values are smaller than the unfiltered values, and the lower the 
bandwidth of the low pass filter, the smaller is the average ratio (note that we’ve used 
different vertical scales, shown in equal scale the difference is even more pronounced). 
This was already apparent in the time series plots in Figure 5, and is not surprising: the 
more energy a filter removes, the smaller the average output signal. 
 
The final plots for this experiment, shown in the bottom row of Figure 6, show the ratio 
of filtered/unfiltered values in a scatter plot against the unfiltered values. Note how the 
filtered values for original values close to zero have a tendency to blow up, and also to 
change the sign: small negative values have equal likelihood of becoming relatively large 
negative or positive values! How can this happen? 

                                                 
2 The cutoff is an arbitrary limit that turned out to work fine for our test cases 
3The white bands in all plots in Figure 6 are caused by the removal of data with original values below the 
cutoff of 0.1  
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Figure 5 Effect of low pass filtering on random data, using 3dB bandwidth of 900MHz (left) and 
100MHz (right). Time records of filtered (top) and unfiltered data (middle) and their ratio (bottom). 



 
Figure 6 Effect of low pass filtering on random data, using 3dB bandwidth of 900MHz (left) and 
100MHz (right). Scatter plots of filtered vs. unfiltered data (top) and their ratio vs. unfiltered data 
(bottom). 
 
A low pass filter essentially puts an upper limit to the rate of change of a signal. It also 
introduces correlation between a value and the values surrounding it: the new value 
depends to a large degree not on the original value itself, but its neighbors. Imagine for 
example a moving average filter, which has a low pass characteristic; even a single 
outlier with a relatively large value can cause the average to change disproportionately if 
the other values are close to each other. 
 
Because values with a relatively small absolute value have a higher probability of 
occurrence in a random signal, they are more likely to change more drastically than larger 
values; and that’s exactly what the bottom column in Figure 6 shows. More important 
however is that we don’t see any evidence that larger values are changed more than 
smaller values. Therefore, this experiment didn’t provide any reason to believe that a low 
pass filter would change the crest factor significantly. 



Effect of low pass filter on distribution shape 
 
The non linear effect of low pass filtering on a random signal that we observed in the 
previous experiment prompted another question: does the filtered noise signal still follow 
a Gaussian distribution? According to the theory, the shape of the distribution is 
independent of its frequency content. However, imagine a filter that removes most of the 
original signal’s energy; the result will be a slowly varying DC signal, and it’s hard to 
imagine that it would still be Gaussian. 
 
Again, we generated vectors of 106 random numbers (following a standard normal 
distribution with µ = 0.0 and σ = 1.0), and filtered them using different 3dB bandwidth 
settings for the low pass filters: 900 MHz and 100 MHz (same as in the previous 
experiment), and 10MHz, 1MHz, 100 kHz, and 10 kHz. We then calculated histogram 
data for the filtered values and plotted them in logarithmic scale (Figure 7). The dotted 
lines depict the probability density function of a Gaussian distribution with mean and 
standard deviation set to the respective values calculated from the filtered data. 
 
The first two plots, for 900 MHz and 100 MHz, show distributions that are still in 
excellent agreement with the theoretical distributions. Both data sets show a slight 
asymmetry and don’t follow the tails of the distribution exactly, but this is not necessarily 
an effect of the filtering. Refer back to Figure 1, where we plotted similar histograms for 
unfiltered data, and you will see distributions that are very similar. 
 
At filter bandwidths of 10 MHz and 1 MHz, we start to see more significant deviations 
from the standard normal distribution, in particular in the tails of the distribution; also the 
asymmetry is more pronounced. However, a casual observer would still identify the 
distributions as Gaussian, especially if they were plotted in linear scale. 
 
The last two plots show that there’s a limit to how much low pass filtering we can apply 
before the result becomes non-Gaussian. For a filter bandwidth of 100 kHz, we can still 
somewhat recognize the characteristic bell shape, even though there are significant 
deviations from the normal distribution even in the center of the data. Finally, the data for 
a 10 kHz bandwidth is not Gaussian at all: the data shows four local maxima, is 
asymmetric, and doesn’t exhibit the sort of tails that are characteristic for normally 
distributed data. 
 
This experiment confirmed our intuition: in the limit, as the filter bandwidth becomes 
very small, the filtered data does no longer follow a Gaussian distribution. What is 
encouraging however is that the point where the Gaussian assumption breaks is fairly 
low: after all, we’ve filtered a noise signal with a 1 GHz bandwidth down to 1 MHz, by 3 
orders of magnitude, and the resulting data was still in pretty good agreement with the 
theory. 
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Figure 7 Effect of low pass filtering on the distribution of random data, using different low pass filter 
bandwidth settings 



Effect of low pass filter bandwidth on crest factor 
 
Our final numerical experiment is a variation of the previous one: again, we looked at the 
effect of a low pass filter on the distribution of a random signal. This time however, we 
used the parameters standard deviation, peak-to-peak, and crest factor to describe the 
resulting distributions numerically rather than plotting them against theory. This enabled 
us to run much more experiments: we used 30 different filter bandwidths, logarithmically 
spaced from 1 kHz to 1 GHz, and accumulated results from 50 runs at each corner 
frequency. The other parameters were unchanged, we used 106 samples and assumed a 
sample rate of 2109 samples per second. 
 
The results of a total of 1500 simulation runs are shown in Figure 8. The left column 
plots show the original (blue dots) and filtered values (black stars) for the standard 
deviation, peak-to-peak, and crest factor as a function of the filter bandwidth. The right 
column shows the ratio of filtered to original value for the same parameters. Notice that 
we’ve used a logarithmic scale for the filter bandwidth, and also for the parameters, with 
one notable exception: the ratio of filtered to original crest factor. 
 
Low pass filtering affects the standard deviation and the peak-to-peak in a very similar 
fashion; they are decreasing almost linearly with decreasing filter bandwidth, down to 
about 100 kHz where we start to see much more variability from run to run (for the same 
corner frequency) and also see evidence that we may reach a kind of plateau. Recall from 
the previous experiment that 100 kHz is the frequency where the filtered distribution 
started to become markedly non-Gaussian! Therefore, standard deviation and peak-to-
peak are no longer useful parameters to describe the distributions. 
 
The value plot for the crest factor is different from the standard deviation and peak-to-
peak plots in that both the original and the filtered data show much more variability from 
run to run. Also, the range of the filtered data is less than one order of magnitude, much 
less than the range for the other parameters, and is non linear in shape. 
 
The ratio plots for standard deviation and peak-to-peak are very similar to the respective 
value plots. This is because the original values are independent of the filter bandwidth, 
with standard deviations very close to 1.0 and peak-to-peak values of about 10.0. At the 
lowest filter setting with a 1 kHz bandwidth, the total signal energy is reduced by about 
99.9%: less than a thousandth of the original signal remains. 
 
Finally, the ratio plot for the crest factor shows the effect of low pass filtering on the 
relative width of the distribution. According to theory, the crest factor should not be 
affected by a low pass filter, however the data doesn’t agree: the crest factor for filtered 
signal is decreased significantly, down to as much as 25% of the original. What’s even 
more interesting is that in some cases, the filtering even caused an increase in crest factor, 
by as much as 10%! 
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Figure 8 Effect of low pass filtering on the standard deviation, peak-to-peak, and crest factor of 
random data 



 
Figure 9 Effect of low pass filtering on the crest factor of random data 
 
In Figure 9, we present the crest factor data again, this time in a scatter plot of filtered vs. 
original values; the dashed line depicts the 100% meridian where filtered and original 
values are equal. The plot shows the results from all 1500 simulation runs, independent of 
filter bandwidth. 
 
Most remarkable about this data is not the effect of the filtering, but the variability in the 
unfiltered data. The average crest factor of the original data was 9.75, with a standard 
deviation of 0.0553 and a distinct skew towards the positive side. The minimum observed 
crest factor was 8.8479, the maximum 11.3658, a span of 2.5 units or about 25%. This 
alone is a concern if we think about the repeatability of a test. 
 
This plot also shows more clearly the cases where the filtering caused the crest factor to 
increase. In about 60 out of 1500 simulation runs, according to Figure 8 all of them with 
filter bandwidth above 100 MHz, either hit a resonance in the filter or had a history 
leading to the peak values that caused the peak-to-peak to decrease less than expected 
based on the filter bandwidth. 



Measurement Results 
 
In order to verify the results from the numerical experiments, we have performed a series 
of measurements with a commercially available noise source, a NoiseCom PNG 7110 
with 1 GHz of bandwidth. Histogram data was acquired with a digital sampling 
oscilloscope with a sampling rate of 8 GS/s and an analog bandwidth of 1.5 GHz. 
 
We used three different filters in this experiment: two standard low pass filters with 3 dB 
bandwidth of 750 MHz and 190 MHz, and a special filter designed for PCI Express 2.0: 
its characteristic is a low pass with 1.5 MHz, followed by a 3 dB up to 100 MHz. Results 
are shown in the table, acquisition was stopped after 106 hits, 107 hits, etc to see the 
dependency of the values on the sample count. 
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No Filter  Standard Deviation  95.26  95.69  95.90  95.37  95.27  95.19  95.08 

  Peak‐to‐peak  957.00  1000.00  1029.00  1143.00  1143.00  1143.00  1157.00 

  Crest Factor  10.05  10.45  10.73  11.98  12.00  12.01  12.17 

750 MHz   Standard Deviation  60.33  60.29  60.21  60.23  60.24  60.25  60.21 

Low pass  Peak‐to‐peak  643.00  714.00  714.00  729.00  729.00  757.00  757.00 

  Crest Factor  10.66  11.84  11.86  12.10  12.10  12.56  12.57 

190 MHz   Standard Deviation  23.01  22.96  22.95  22.95  22.94  22.94  22.95 

Low pass  Peak‐to‐peak  371.00  371.00  371.00  371.00  386.00  386.00  386.00 

(#1)  Crest Factor  16.12  16.16  16.17  16.17  16.83  16.83  16.82 

190 MHz   Standard Deviation  26.63  26.63  26.64  26.64  26.63  26.62  26.62 

Lowpass  Peak‐to‐peak  265.70  302.90  302.90  302.90  308.60  314.30  320.00 

(#2)  Crest Factor  9.98  11.37  11.37  11.37  11.59  11.81  12.02 

PCIe Filter  Standard Deviation  3.14  3.15  3.15  3.15  3.15  3.15  3.15 

  Peak‐to‐peak  34.00  34.00  34.57  36.57  36.57  36.57  36.86 

  Crest Factor  10.83  10.79  10.97  11.61  11.61  11.61  11.70 

 
Note that we have repeated the experiment with the 190 MHz filter: the first run used the 
same vertical scaling as the unfiltered reference measurement and the 750 MHz low pass 
filter: 500 mV/div. Because the crest factors were so far off from the other experiments, 
we’ve repeated the measurement with a different scaling of 100 mV/div – notice how this 
influenced the results: measurements with real random data are incredibly difficult! 
 
Overall, the data that we’ve captured was in good agreement with our numerical 
experiments: the crest factor values for 106 hits were in the same range as the numerical 
values for 106 random numbers, and the trend as the number of hits increases fits with our 
expectation that the crest factor increases continually. Even at 108 hits, we were still far 
from the specified crest factor limit of the noise source. 



Summary and Conclusion 
 
In receiver tolerance testing, we make use of two basic assumptions. First, that the peak-
to-peak of a random signal at some probability level equals the rms value times a 
constant factor (for example 14 at 10-12). And second, that the rms of two random signals 
adds up in a root of the sum of squares fashion. Both assumptions hold only if the noise 
distributions are truly Gaussian. The results from our numerical experiments show that 
low pass filtering does indeed affect the distribution of random signals, and as a result the 
total jitter or eye opening at the device, defined in terms of the bit error ratio, would not 
match the intended specification and the results of the test become difficult to interpret. 
 
Additionally, our observations indicate that the crest factor may in fact not be a good 
measure for the distribution of a random signal: because the peak-to-peak of a random 
signal, and hence the crest factor, is dominated by only two values in a large sample, 
namely the minimum and maximum, it is bound to be randomly distributed. There have 
been concerns in the past about the repeatability of tests that use true random signals as a 
stimulus. However, to our knowledge the magnitude of the variability was not studied 
before. Additionally, there are no good alternatives: deterministic methods to create 
random signals that are sufficiently random yet repeatable have been described [2], but 
are not available yet with the necessary bandwidth. 
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