
Jitter 360° Knowledge Series 
Part 2: What the Dual-Dirac Model is and What it is Not 

 
 

 1 

 

What the Dual-Dirac Model is and What it is Not 

Ransom Stephens 

October, 2006 

 

Abstract: 

The dual-Dirac model is a simple tool for estimating total jitter defined at a bit 

error ratio, TJ(BER), for serial data components and systems. By virtue of the fact 

that it can be used to combine the RJ and DJ of different elements to predict the 

TJ(BER) for a system, the dual-Dirac model is a key tool in specifications for 

serial data links. In this paper, we present the dual-Dirac model, how and why it is 

used in specifications, how it is used to estimate the Total Jitter of a system, the 

assumptions it makes and where they fail. 

 

 

The dual-Dirac model was introduced several years ago as a tool for quickly estimating the total 

jitter defined at a bit error ratio, TJ(BER) [for the definition of TJ(BER), see Part 1 in this series, 

The Meaning of Total Jitter]. Since its introduction, the merits of the dual-Dirac model have 

been controversial. The controversy is almost always caused by misunderstandings in the 

meaning of the model parameters. The dual-Dirac model uses two parameters that, in most of the 

literature, are called RJ and DJ but, unless the model assumptions are strictly valid, these 

parameters are model dependent. To cut out that confusion, let’s distinguish the model dependent 

parameters by calling them RJ(δδ) and DJ(δδ). As we’ll see, if these model-dependent 

parameters are properly measured, then the relationship 

TJ(BER) = 2QBER×RJ(δδ) + DJ(δδ)    (1) 

is model-independent. That is, TJ(BER) calculated from Eq. (1) is as accurate as the 

measurements of RJ(δδ) and DJ(δδ); any inaccuracy in TJ(BER) is due to the measurement, not 

the model. But I’m getting ahead of myself, let’s go back and start at the beginning. 
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The dual-Dirac model 
Since the following is a discussion of a mathematical model, the formalism is somewhat deep. 

The main reason we present it here is to show where Eq. (1) comes from and provide a rigorous 

foundation for the conclusions drawn in the subsequent section. If you’re not intrigued by the 

formalism, then skim through this section, pay attention to the graphics, and you’ll be well 

prepared for the following section where the important points of how to use the dual-Dirac 

model are made. 

 

First, the Dirac-delta function, δ(x − x0), is conveniently defined so that it is zero everywhere but 

at x = x0, where it’s infinite, but infinite in such a way that its integral is one: 
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That is, δ(x − x0) is a spike centered at x = x0.  

 

Second, as we know, the Probability Density Function (PDF) for RJ is a Gaussian, 
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Third, the distributions of different components of jitter that are independent, like RJ and DJ, 

combine through convolution, 
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Figure 1 shows the pieces of the dual-Dirac model. The dual-Dirac DJ PDF is simply the sum of 

two Dirac delta functions, one centered at µL and one at µR, 

PDFdual-Direc DJ(x) = δ(x − µL) + δ(x − µR).   (5) 
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The peak-to-peak DJ of this distribution is simply the separation of the two Dirac deltas, µR − µL. 

Now introduce Gaussian RJ, Eq. (3) and combine it with the dual-Dirac DJ, Eq. (5), using the 

convolution, Eq. (4), to get the complete dual-Dirac PDF,  
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two Gaussians, each displaced from the origin.  

 

Figure 1: The dual-Dirac jitter distribution. In (a) the DJ and RJ distributions and, in (b), 

their convolution. 

Another way to think of the dual-Dirac model that may be more intuitive is to see how it evolves 

in an eye diagram. Start with no jitter in Figure 2a and introduce only the dual-Dirac DJ in 

Figure 2b. Notice that there are two distinct logic-transition trajectories, one has its crossing 

point at µL and the other at µR. When RJ is introduces in Figure 2c, the two trajectories are 

smeared according to the Gaussian. The dual-Dirac jitter distribution is shown by the histogram 

in the upper left corner of Figure 2c. In practice, the dual-Dirac DJ distribution can be realized 

by square-wave phase modulation – hardly a realistic scenario. 
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Figure 2: An eye diagram with, (a) no jitter, (b) dual-Dirac DJ, (c) RJ and dual-Dirac DJ, 

and (d) bathtub plot, BER(x). 

Once we have the jitter PDF, the bathtub plot shown in Figure 2d can be calculated. BER(x) is 

the probability that an error will occur if the sampling point is positioned at the time-delay 

position, x. In general, BER(x) is given by 
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where ρT is the logic transition density (i.e., the ratio of the number of transitions to the number 

of bits). The first term on the right of Eq. (7) accounts for fluctuations across the sampling point 

from left to right and the second term accounts for fluctuations across the sampling point from 

right to left.  

 

Plug the dual-Dirac model, Eq. (6) into Eq. (7), and get 
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where erfc(x) is the “complementary error function.” Evaluate the complementary error 

functions, do a bunch of algebra, and get Eq. (1),  

TJ(BER) = 2QBER×RJ(δδ) + DJ(δδ)     (1) 

where QBER is a constant that can be calculated from the complementary error function and is 

tabulated for a few values of BER in Table 1. RJ is given by σ and DJ is given by the separation 

of the two Dirac-delta functions, µR − µL. That is,  

RJ(δδ) = σ  and  DJ(δδ) = µR − µL.     (9) 

Equation (1) with Eq. (9) is a nice result, but what good does it do with a real-life jitter 

distribution like the one in Figure 3? 

BER QBER

10-10 6.3 

10-11 6.7 

10-12 7.0 

10-13 7.4 

10-14 7.7 

Table 1: Values of QBER for different BERs. 
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Figure 3: A more realistic eye-diagram.  

 

What the dual-Dirac model is and what it is not 

Since the calculation of TJ(BER) depends only on the tails of the jitter distribution, i.e., from “x 

to ∞” and “−∞ to x” as in Eq. (7), we can calculate TJ(BER) using Eq. (1) for any jitter 

distribution as long as: 

(1) we can neglect amplitude noise, and 

(2) the tails of the jitter distribution are dominated by RJ. 

These are the two key assumptions of the dual-Dirac model. 

 

Here’s another way of saying it:  
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As long as the tails of the distribution follow the RJ Gaussian at the BER we 

care about, TJ(BER) is given by Eq. (1).  

The dual-Dirac model is just a convenient way of lining the Gaussian RJ distribution up with the 

data. That’s all it is. 

 

The trick to using the dual-Dirac model, is remembering that its two parameters, RJ(δδ) and 

DJ(δδ), are in general model-dependent and have to be measured from the data accordingly. 

Fortunately, RJ(δδ) and DJ(δδ) can be measured in many different ways for any jitter 

distribution for which the two assumptions above are valid. 

 

Let’s start with RJ(δδ) because it’s much less model-dependent than DJ(δδ). As long as the 

rising and falling slew rates are the same, the dual-Dirac RJ is exactly the model-independent RJ 

given by the width, or rms, of the RJ Gaussian, σ. On the other hand, if the edges are not 

symmetric, then RJ(δδ) is defined as the average of the Gaussian tails of the left and right 

widths: 

 Symmetric edges, RJ is model-independent: RJ(δδ) = RJ ≡ σ   (10) 

Asymmetric edges, RJ is model-dependent: RJ(δδ) ≡ ½ (σL + σR)    (11) 

In the vast majority of systems the difference between Eq. (10) and (11) is smaller than the 

uncertainty in the measurements of σL and σR and we can safely assume RJ(δδ) = RJ = σ.  

 

By its nature the RJ of one element is statistically independent of the RJ of another element. That 

is, the RJ of one element doesn’t interfere with the RJ of another. Independence means that the 

RJ distribution of two network elements is given by the convolution of the two RJ distributions. 

The convolution of two Gaussians is a Gaussian whose width is the square-root of the sum of the 

squares of the individual widths. Thus, the RJ for a system of N elements, is 

22
2

2
1 Nsystem σσσσ +++= K .     (12) 

 

DJ(δδ) is more complicated. Where the model dependence of RJ is almost always negligible, the 

model dependence of DJ(δδ) is rarely negligible.  
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The only case where the actual peak-to-peak DJ, lets call it DJ(p-p), is the same as the dual-Dirac 

DJ, DJ(δδ), is when the DJ distribution really is given by the sum of two Dirac-delta functions, 

for example, when the phase is modulated by a square-wave. Figure 4 shows how DJ(p-p) differs 

from DJ(δδ). By their bounded nature, DJ distributions tend to have sharp edges and, by its 

Gaussian nature, RJ has long smooth tails. The process of convolving DJ with Gaussian RJ is a 

process of smoothing the edges of the DJ distribution. As the edges of the DJ distribution are 

sanded down, they appear to be pulled inward, closer to the nominal crossing point. The result is 

a general statement about the model-dependence of DJ, 

DJ(δδ) ≤ DJ(p-p).      (13) 

The result, Eq. (13), is the reason that the dual-Dirac model suffers so much unwarranted 

criticism. It’s a model. It’s okay for a model to have model-dependent parameters as long as the 

model-dependence is included when they’re measured. In other words, to use Eq. (1), we need to 

measure DJ(δδ), not DJ(p-p) – which in some ways is good news. It’s easier to measure DJ(δδ) 

than it is to measure DJ(p-p). An accurate measurement of DJ(p-p) requires a complete 

understanding of all sources of DJ, including their relative phases, which is difficult to measure 

accurately on most equipment. Accurate measurement of DJ(δδ) only requires that the data 

sample is large enough to have sampled all DJ processes.  

 

The main point is that, from the compliance point of view, DJ(δδ) is more useful than DJ(p-p). 

The DJ(δδ) of different components can be combined to estimate the DJ(δδ) of a system, but the 

DJ(p-p) cannot.  
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Figure 4: (a) An eye diagram and jitter histogram for a signal with sinusoidal DJ and RJ, 

(b), an exploded view of the jitter histogram with the underlying sinusoidal DJ PDF 

overlaid. Notice how the sharp edges of the DJ distribution are pulled inward when RJ is 

introduced. In both cases, the actual peak-to-peak DJ, DJ(p-p), and the model-dependent 

dual-Dirac DJ, DJ(δδ), are shown, demonstrating Eq. (13). 

 

If the PDF of one jitter source changes when the PDF of another source is changed, then those 

two sources are dependent or correlated. The peak-to-peak value of the convolution of two 

independent distributions is the sum of the peak-to-peak values of each distribution. On the other 

hand, the peak-to-peak value of the convolution of two correlated distributions is less than or 

equal to the sum of the peak-to-peak values of each distribution. Generalizing to a system of N 

components, we can say 

DJsystem(p-p) ≤ DJ1(p-p) + DJ2(p-p) + …+ DJN(p-p).   (14) 

 

The problem is that the DJ of different system elements is almost always correlated. For 

example, the ISI of a transmitted signal affects the ISI introduced by the transmission channel. If 

we used the sum of the component’s DJ(p-p) to estimate the DJ of the system we’d have two 

problems. First, we’d always overestimate the actual DJ(p-p) and, second, DJ(p-p) isn’t the right 

parameter to use in Eq. (1) for estimating TJ(BER), we need DJ(δδ) for that. 



Jitter 360° Knowledge Series 
Part 2: What the Dual-Dirac Model is and What it is Not 

 
 

 10 

 

We need a simple expression for combining the DJ(δδ) of different components for use, along 

with the combination of component RJ of Eq. (12), in Eq. (1). The obvious candidate is 

DJsystem(δδ) ≈ DJ1(δδ) + DJ2(δδ) + …+ DJN(δδ).    (15) 

 

Equation (15) is an approximation, and should be treated with appropriate suspicion, though it’s 

usually a pretty good approximation. Think of it like this, as more DJ sources are introduced, the 

resulting DJ distribution gets smoother around the edges. The smoother the distribution, the 

greater the discrepancy between DJ(δδ) and DJ(p-p). Now, since the maximum possible DJ(p-p) 

is given by the sum of the component DJ(p-p) values, Eq. (14), and since DJ(δδ) is generally 

smaller than DJ(p-p), it’s reasonable to expect that DJsystem(δδ) should be smaller than that given 

by the sum, Eq. (15). We might then expect that Eq. (15) is a conservative estimate for the 

system DJ. That’s the argument, anyway.  

 

It’s possible to get an idea of the accuracy of Eq. (15) by analyzing the different DJ components, 

a diagnostic technique that’s the subject of another paper in this series, “All About the 

Acronyms: RJ, DJ, DDJ, ISI, DCD, PJ, SJ,…” 

Equations (12) and (15) along with (1), rewritten here, 

22
2

2
1 Nsystem σσσσ +++= K .     (12) 

DJsystem(δδ) ≈ DJ1(δδ) + DJ2(δδ) + …+ DJN(δδ).    (15) 

TJ(BER) = 2QBER×σ + DJ(δδ)     (1) 

provide the tools we need to estimate the TJ(BER) of a system from the RJ and DJ(δδ) of its 

components. It is for this reason that when DJ is quoted in the standards specification for a given 

technology like FibreChannel, PCI-Express, FBD, SATA, et cetera, it is DJ(δδ), not DJ(p-p) that 

is relevant. 

Conclusion 

The dual-Dirac model is useful both for estimating TJ(BER) and combining the RJ and DJ of 

separate components to estimate the TJ(BER) of a system – provided the model dependent 

parameters, DJ(δδ) and RJ(δδ) are used. The difference between the model-dependent RJ, 
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RJ(δδ), and the true RJ, σ, is almost always negligible and it’s perfectly safe to assume RJ = σ. 

On the other hand, the model-dependent DJ, DJ(δδ), is different than the true peak-to-peak DJ, 

DJ(p-p). At least in the context of standards DJ(δδ) is more useful than DJ(p-p).  

 

But it’s still a model. It still rests on assumptions that can be debated. For example, most 

techniques for measuring RJ run into serious problems in environments that include crosstalk 

and other forms of “bounded uncorrelated jitter.” Another potential problem is that If RJ doesn’t 

follow a Gaussian distribution then the very foundation of the model collapses or if the DJ 

distribution mimics the RJ distribution than many measurement techniques will overestimate RJ. 

In fact, a large number of small deterministic effects can result in a distribution that is 

indistinguishable from a Gaussian down to a very low BER. These are called “truncated 

Gaussians.” If the Gaussian is truncated at a BER of 10-8 and a data sample of 107
 logic 

transitions is used to measure it, then the RJ is upwardly biased and Eq. (1) will yield a higher 

TJ(BER) than is the truth. Amplitude noise can also seriously complicate the situation; jitter 

analysis only considers one dimension of a two-dimensional problem. 


